Effects of Insulin Replacements, Inhibitors of Angiotensin, and PKCβ's Actions to Normalize Cardiac Gene Expression and Fuel Metabolism in Diabetic Rats

Author:

Arikawa Emi1,Ma Ronald C.W.1,Isshiki Keiji1,Luptak Ivan2,He Zhiheng1,Yasuda Yutaka1,Maeno Yasuhiro1,Patti Mary Elizabeth1,Weir Gordon C.1,Harris Robert A.3,Zammit Victor A.4,Tian Rong2,King George L.1

Affiliation:

1. Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts

2. Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

3. Indiana University School of Medicine, Indianapolis, Indiana

4. Warwick Medical School, Coventry, U.K

Abstract

High-density oligonucleotide arrays were used to compare gene expression of rat hearts from control, untreated diabetic, and diabetic groups treated with islet cell transplantation (ICT), protein kinase C (PKC)β inhibitor ruboxistaurin, or ACE inhibitor captopril. Among the 376 genes that were differentially expressed between untreated diabetic and control hearts included key metabolic enzymes that account for the decreased glucose and increased free fatty acid utilization in the diabetic heart. ICT or insulin replacements reversed these gene changes with normalization of hyperglycemia, dyslipidemia, and cardiac PKC activation in diabetic rats. Surprisingly, both ruboxistaurin and ACE inhibitors improved the metabolic gene profile (confirmed by real-time RT-PCR and protein analysis) and ameliorated PKC activity in diabetic hearts without altering circulating metabolites. Functional assessments using Langendorff preparations and 13C nuclear magnetic resonance spectroscopy showed a 36% decrease in glucose utilization and an impairment in diastolic function in diabetic rat hearts, which were normalized by all three treatments. In cardiomyocytes, PKC inhibition attenuated fatty acid–induced increases in the metabolic genes PDK4 and UCP3 and also prevented fatty acid–mediated inhibition of basal and insulin-stimulated glucose oxidation. Thus, PKCβ or ACE inhibitors may ameliorate cardiac metabolism and function in diabetes partly by normalization of fuel metabolic gene expression directly in the myocardium.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3