RILP Restricts Insulin Secretion Through Mediating Lysosomal Degradation of Proinsulin

Author:

Zhou Yuxia1,Liu Zhiyu1,Zhang Shengmei1,Zhuang Ruijuan1,Liu Huiying1,Liu Xiaoqing1,Qiu Xi1,Zhang Ming1,Zheng Yanpan1,Li Liangcheng1,Hong Wanjin12ORCID,Wang Tuanlao1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China

2. Institute of Molecular and Cell Biology, A STAR (Agency of Science, Technology and Research), Singapore, Singapore

Abstract

Insulin secretion is tightly regulated by membrane trafficking. RILP (Rab7 interacting lysosomal protein) regulates the endocytic trafficking, but its role in insulin secretion has not been investigated. In this study, we found that overexpression of RILP inhibited insulin secretion in both the β-cell lines and freshly isolated islets. Consequently, the expression of RILP in islets suppressed the ability to recover the glucose homeostasis in type 1 diabetes mice upon transplantation. Of physiological relevance is that RILP expression was upregulated in the diabetic mouse islets. Mechanistically, overexpression of RILP induced insulin granule clustering, decreased the number of proinsulin-containing granules in β-cells, and significantly promoted proinsulin degradation. Conversely, RILP depletion sustained proinsulin and increased insulin secretion. The proinsulin degradation induced by RILP expression was inhibited by lysosomal inhibitors and was Rab7-dependent. Finally, we showed that RILP interacts with insulin granule–associated Rab26 to restrict insulin secretion. This study presents a new pathway regulating insulin secretion and mechanically demonstrates a novel function of RILP in modulating insulin secretion through mediating the lysosomal degradation of proinsulin.

Funder

National Natural Science Foundation of China

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3