Activation of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis Enhances the Reparative Function of Dysfunctional Diabetic Endothelial Progenitors

Author:

Jarajapu Yagna P.R.1,Bhatwadekar Ashay D.1,Caballero Sergio1,Hazra Sugata1,Shenoy Vinayak2,Medina Reinhold3,Kent David4,Stitt Alan W.3,Thut Catherine5,Finney Eva M.5,Raizada Mohan K.2,Grant Maria B.1

Affiliation:

1. Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida

2. Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida

3. Center for Vision Science, Queen’s University, Belfast, Ireland

4. The Vision Clinic, Kilkenny, Ireland

5. Molecular Profiling and Research Informatics, Merck & Co., Inc., West Point, Pennsylvania

Abstract

We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34+ cells isolated from diabetic individuals. Peripheral blood CD34+ cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell–derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34+ cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34+ cell dysfunction and also confers protection from development of this dysfunction.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3