Affiliation:
1. National Institute for Public Health and the Environment, Bilthoven, the Netherlands
2. Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
3. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
Abstract
OBJECTIVE
Metabolic syndrome (MetS) is a cluster of abdominal obesity, hyperglycemia, hypertension, and dyslipidemia, which increases the risk for type 2 diabetes and cardiovascular diseases (CVDs). Some argue that MetS is not a single disorder because the traditional MetS features do not represent one entity, and they would like to exclude features from MetS. Others would like to add additional features in order to increase predictive ability of MetS. The aim of this study was to identify a MetS model that optimally predicts type 2 diabetes and CVD while still representing a single entity.
RESEARCH DESIGN AND METHODS
In a random sample (n = 1,928) of the EPIC-NL cohort and a subset of the EPIC-NL MORGEN study (n = 1,333), we tested the model fit of several one-factor MetS models using confirmatory factor analysis. We compared predictive ability for type 2 diabetes and CVD of these models within the EPIC-NL case-cohort study of 545 incident type 2 diabetic subjects, 1,312 incident CVD case subjects, and the random sample, using survival analyses and reclassification.
RESULTS
The standard model, representing the current MetS definition (EPIC-NL comparative fit index [CFI] = 0.95; MORGEN CFI = 0.98); the standard model excluding blood pressure (EPIC-NL CFI = 0.95; MORGEN CFI = 1.00); and the standard model extended with hsCRP (EPIC-NL CFI = 0.95) had an acceptable model fit. The model extended with hsCRP predicted type 2 diabetes (integral discrimination index [IDI]: 0.34) and CVD (IDI: 0.07) slightly better than did the standard model.
CONCLUSIONS
It seems valid to represent the traditional MetS features by a single entity. Extension of this entity with hsCRP slightly improves predictive ability for type 2 diabetes and CVD.
Publisher
American Diabetes Association
Subject
Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献