Application of Zone Model Predictive Control Artificial Pancreas During Extended Use of Infusion Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial

Author:

Forlenza Gregory P.1ORCID,Deshpande Sunil23,Ly Trang T.4,Howsmon Daniel P.5,Cameron Faye5,Baysal Nihat5,Mauritzen Eric6,Marcal Tatiana4,Towers Lindsey1,Bequette B. Wayne5,Huyett Lauren M.37,Pinsker Jordan E.3,Gondhalekar Ravi23,Doyle Francis J.23,Maahs David M.14,Buckingham Bruce A.4,Dassau Eyal23

Affiliation:

1. Barbara Davis Center, University of Colorado Denver, Denver, CO

2. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA

3. William Sansum Diabetes Center, Santa Barbara, CA

4. Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA

5. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY

6. Department of Computer Science and Engineering, University of California San Diego, San Diego, CA

7. Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA

Abstract

OBJECTIVE As artificial pancreas (AP) becomes standard of care, consideration of extended use of insulin infusion sets (IIS) and continuous glucose monitors (CGMs) becomes vital. We conducted an outpatient randomized crossover study to test the safety and efficacy of a zone model predictive control (zone-MPC)–based AP system versus sensor augmented pump (SAP) therapy in which IIS and CGM failures were provoked via extended wear to 7 and 21 days, respectively. RESEARCH DESIGN AND METHODS A smartphone-based AP system was used by 19 adults (median age 23 years [IQR 10], mean 8.0 ± 1.7% HbA1c) over 2 weeks and compared with SAP therapy for 2 weeks in a crossover, unblinded outpatient study with remote monitoring in both study arms. RESULTS AP improved percent time 70–140 mg/dL (48.1 vs. 39.2%; P = 0.016) and time 70–180 mg/dL (71.6 vs. 65.2%; P = 0.008) and decreased median glucose (141 vs. 153 mg/dL; P = 0.036) and glycemic variability (SD 52 vs. 55 mg/dL; P = 0.044) while decreasing percent time <70 mg/dL (1.3 vs. 2.7%; P = 0.001). AP also improved overnight control, as measured by mean glucose at 0600 h (140 vs. 158 mg/dL; P = 0.02). IIS failures (1.26 ± 1.44 vs. 0.78 ± 0.78 events; P = 0.13) and sensor failures (0.84 ± 0.6 vs. 1.1 ± 0.73 events; P = 0.25) were similar between AP and SAP arms. Higher percent time in closed loop was associated with better glycemic outcomes. CONCLUSIONS Zone-MPC significantly and safely improved glycemic control in a home-use environment despite prolonged CGM and IIS wear. This project represents the first home-use AP study attempting to provoke and detect component failure while successfully maintaining safety and effective glucose control.

Funder

JDRF

National Institutes of Health

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3