Relationships Between Circulating Metabolic Intermediates and Insulin Action in Overweight to Obese, Inactive Men and Women

Author:

Huffman Kim M.1,Shah Svati H.2,Stevens Robert D.3,Bain James R.3,Muehlbauer Michael3,Slentz Cris A.2,Tanner Charles J.4,Kuchibhatla Maragatha5,Houmard Joseph A.4,Newgard Christopher B.36,Kraus William E.2

Affiliation:

1. Physical Medicine and Rehabilitation, Veterans Affairs Medical Center, Durham, North Carolina;

2. Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina;

3. Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina;

4. Department of Exercise and Sports Science and the Human Performance Laboratory, East Carolina University, Greenville, North Carolina;

5. Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, North Carolina;

6. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.

Abstract

OBJECTIVE To determine whether circulating metabolic intermediates are related to insulin resistance and β-cell dysfunction in individuals at risk for type 2 diabetes. RESEARCH DESIGN AND METHODS In 73 sedentary, overweight to obese, dyslipidemic individuals, insulin action was derived from a frequently sampled intravenous glucose tolerance test. Plasma concentrations of 75 amino acids, acylcarnitines, free fatty acids, and conventional metabolites were measured with a targeted, mass spectrometry–based platform. Principal components analysis followed by backward stepwise linear regression was used to explore relationships between measures of insulin action and metabolic intermediates. RESULTS The 75 metabolic intermediates clustered into 19 factors comprising biologically related intermediates. A factor containing large neutral amino acids was inversely related to insulin sensitivity (SI) (R2 = 0.26). A factor containing fatty acids was inversely related to the acute insulin response to glucose (R2 = 0.12). Both of these factors, age, and a factor containing medium-chain acylcarnitines and glucose were inversely and independently related to the disposition index (DI) (R2 = 0.39). Sex differences were found for metabolic predictors of SI and DI. CONCLUSIONS In addition to the well-recognized risks for insulin resistance, elevated concentrations of large, neutral amino acids were independently associated with insulin resistance. Fatty acids were inversely related to the pancreatic response to glucose. Both large neutral amino acids and fatty acids were related to an appropriate pancreatic response, suggesting that these metabolic intermediates might play a role in the progression to type 2 diabetes, one by contributing to insulin resistance and the other to pancreatic failure. These intermediates might exert sex-specific effects on insulin action.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3