Genetically Predicted Glucose-Dependent Insulinotropic Polypeptide (GIP) Levels and Cardiovascular Disease Risk Are Driven by Distinct Causal Variants in the GIPR Region

Author:

Bowker Nicholas1,Hansford Robert1,Burgess Stephen23,Foley Christopher N.23,Auyeung Victoria P.W.1,Erzurumluoglu A. Mesut1,Stewart Isobel D.1,Wheeler Eleanor1,Pietzner Maik1,Gribble Fiona4ORCID,Reimann Frank4,Bhatnagar Pallav5,Coghlan Matthew P.5,Wareham Nicholas J.1,Langenberg Claudia16ORCID

Affiliation:

1. MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K.

2. MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, U.K.

3. Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K.

4. University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science, and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, U.K.

5. Diabetes and Complications Therapy Area, Eli Lilly & Company, Indianapolis, IN

6. Computational Medicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany

Abstract

There is considerable interest in GIPR agonism to enhance the insulinotropic and extrapancreatic effects of GIP, thereby improving glycemic and weight control in type 2 diabetes (T2D) and obesity. Recent genetic epidemiological evidence has implicated higher GIPR-mediated GIP levels in raising coronary artery disease (CAD) risk, a potential safety concern for GIPR agonism. We therefore aimed to quantitatively assess whether the association between higher GIPR-mediated fasting GIP levels and CAD risk is mediated via GIPR or is instead the result of linkage disequilibrium (LD) confounding between variants at the GIPR locus. Using Bayesian multitrait colocalization, we identified a GIPR missense variant, rs1800437 (G allele; E354), as the putatively causal variant shared among fasting GIP levels, glycemic traits, and adiposity-related traits (posterior probability for colocalization [PPcoloc] > 0.97; PP explained by the candidate variant [PPexplained] = 1) that was independent from a cluster of CAD and lipid traits driven by a known missense variant in APOE (rs7412; distance to E354 ∼770 Kb; R2 with E354 = 0.004; PPcoloc > 0.99; PPexplained = 1). Further, conditioning the association between E354 and CAD on the residual LD with rs7412, we observed slight attenuation in association, but it remained significant (odds ratio [OR] per copy of E354 after adjustment 1.03; 95% CI 1.02, 1.04; P = 0.003). Instead, E354’s association with CAD was completely attenuated when conditioning on an additional established CAD signal, rs1964272 (R2 with E354 = 0.27), an intronic variant in SNRPD2 (OR for E354 after adjustment for rs1964272: 1.01; 95% CI 0.99, 1.03; P = 0.06). We demonstrate that associations with GIP and anthropometric and glycemic traits are driven by genetic signals distinct from those driving CAD and lipid traits in the GIPR region and that higher E354-mediated fasting GIP levels are not associated with CAD risk. These findings provide evidence that the inclusion of GIPR agonism in dual GIPR/GLP1R agonists could potentiate the protective effect of GLP-1 agonists on diabetes without undue CAD risk, an aspect that has yet to be assessed in clinical trials.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3