Age-Dependent Labeling and Imaging of Insulin Secretory Granules

Author:

Ivanova Anna12,Kalaidzidis Yannis34,Dirkx Ronald1,Sarov Mihail3,Gerlach Michael56,Schroth-Diez Britta3,Müller Andreas1,Liu Yanmei13,Andree Cordula3,Mulligan Bernard13,Münster Carla1,Kurth Thomas6,Bickle Marc3,Speier Stephan56,Anastassiadis Konstantinos6,Solimena Michele13

Affiliation:

1. Molecular Diabetology, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany

2. International Max Planck Research School, Dresden, Germany

3. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

4. A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia

5. Islet Cell Regeneration, Paul Langerhans Institute Dresden, Dresden University of Technology, Dresden, Germany

6. Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany

Abstract

Insulin is stored within the secretory granules of pancreatic β-cells, and impairment of its release is the hallmark of type 2 diabetes. Preferential exocytosis of newly synthesized insulin suggests that granule aging is a key factor influencing insulin secretion. Here, we illustrate a technology that enables the study of granule aging in insulinoma cells and β-cells of knock-in mice through the conditional and unequivocal labeling of insulin fused to the SNAP tag. This approach, which overcomes the limits encountered with previous strategies based on radiolabeling or fluorescence timer proteins, allowed us to formally demonstrate the preferential release of newly synthesized insulin and reveal that the motility of cortical granules significantly changes over time. Exploitation of this approach may enable the identification of molecular signatures associated with granule aging and unravel possible alterations of granule turnover in diabetic β-cells. Furthermore, the method is of general interest for the study of membrane traffic and aging.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3