Characterization of Glucosensing Neuron Subpopulations in the Arcuate Nucleus

Author:

Fioramonti Xavier1,Contié Sylvain1,Song Zhentao2,Routh Vanessa H.2,Lorsignol Anne1,Pénicaud Luc1

Affiliation:

1. Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5018, Paul Sabatier University, Toulouse, France

2. Department of Pharmacology and Physiology, New Jersey Medical School, Newark, New Jersey

Abstract

Four types of responses to glucose changes have been described in the arcuate nucleus (ARC): excitation or inhibition by low glucose concentrations <5 mmol/l (glucose-excited and -inhibited neurons) and by high glucose concentrations >5 mmol/l (high glucose–excited and –inhibited neurons). However, the ability of the same ARC neuron to detect low and high glucose concentrations has never been investigated. Moreover, the mechanism involved in mediating glucose sensitivity in glucose-inhibited neurons and the neurotransmitter identity (neuropeptide Y [NPY] or pro-opio melanocortin [POMC]) of glucosensing neurons has remained controversial. Using patch-clamp recordings on acute mouse brain slices, successive extracellular glucose changes greater than and less than 5 mmol/l show that glucose-excited, high glucose–excited, glucose-inhibited, and high glucose–inhibited neurons are different glucosensing cell subpopulations. Glucose-inhibited neurons directly detect decreased glucose via closure of a chloride channel. Using transgenic NPY–green fluorescent protein (GFP) and POMC-GFP mice, we show that 40% of NPY neurons are glucose-inhibited neurons. In contrast, <5% of POMC neurons responded to changes in extracellular glucose >5 mmol/l. In vivo results confirm the lack of glucose sensitivity of POMC neurons. Taken together, hypo- and hyperglycemia are detected by distinct populations of glucosensing neurons, and POMC and NPY neurons are not solely responsible for ARC glucosensing.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3