β-Cell Neogenesis During Prolonged Hyperglycemia in Rats

Author:

Lipsett Mark1,Finegood Diane T.1

Affiliation:

1. From the Diabetes Research Laboratory, School of Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada

Abstract

β-cell neogenesis from ductal precursors, and possibly from other pancreatic cell types, contributes to the expansion of β-cell mass during development and after diabetogenic insults in rodents. Using a mathematical model−based analysis of β-cell mass, replication, and size, we recently demonstrated that neogenesis is also quantitatively important to the expansion of β-cell mass during prolonged hyperglycemia. In the present study, we examined the morphological appearance of neogenic focal areas, duct cell replication, and β-cell cluster size distribution in male Sprague Dawley rats infused with either saline or 50% glucose (2 ml/h) for 0, 1, 2, 3, 4, 5, or 6 days. Pancreatic tissue characterized by a high density of small duct-like structures, previously described as neogenic focal areas, were present in glucose-infused rats after 2, 3, or 4 days of infusion. The cross-sectional area of the pancreas characterized as focal tissue peaked after 3 days of infusion at 2.9 ± 0.8%. In contrast to the partial pancreatectomy model of β-cell regeneration, duct cell replication was not increased before or during focal area formation. However, the replication rate of cells in the duct-like structures of the focal areas was twofold greater than in cells of the common pancreatic duct and 15- to 40-fold greater than in cells of small, medium, and large ducts. Duct-cell replication was significantly reduced in small, medium, and large ducts of glucose as compared to saline-infused rats (0.21 ± 0.02 vs. 0.48 ± 0.04%; P < 0.03). Duct-associated β-cell mass was not different in glucose- and saline-infused rats (P = 0.78), whereas the number of acinar-associated single β -cells increased by 70% after 3 and 4 days of glucose infusion. In addition to small duct-like structures, focal areas had considerable T-cell infiltration (151 ± 30 T-cells/ mm2). There was also an increase in T-cell infiltration in acinar tissue of glucose as compared to saline-infused rats (0.43 ± 0.11 vs. 0.03 ± 0. 01 T-cells/mm2; P < 0.0001). In conclusion, these data suggest that neogenic focal areas in these glucose-infused rats do not arise from replication and differentiation of ductal progenitor cells. Rather, acinar cell transdifferentiation into β-cells and acinar cell dedifferentiation into neogenic focal areas lead to new β-cell formation during prolonged hyperglycemia.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3