Metabolic and Autocrine Regulation of the Mammalian Target of Rapamycin by Pancreatic β-Cells

Author:

McDaniel Michael L.1,Marshall Connie A.1,Pappan Kirk L.1,Kwon Guim1

Affiliation:

1. From the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri

Abstract

Mammalian target of rapamycin (mTOR) is a serine and threonine protein kinase that regulates numerous cellular functions, in particular, the initiation of protein translation. mTOR-mediated phosphorylation of both the translational repressor eukaryotic initiation factor 4E binding protein-1 and p70 S6 kinase are early events that control the translation initiation process. Rapamycin, an inhibitor of mTOR, is a potent immunosuppressant due, in part, to its ability to interfere with T-cell activation at the level of translation, and it has gained a prominent role in preventing the development and progression of rejection in pancreatic islet transplant recipients. The characterization of the insulin signaling cascade that modulates mTOR in insulin-sensitive tissues has been a major focus of investigation. Recently, the ability of nutrients, in particular the branched-chain amino acid leucine, to activate mTOR independent of insulin by a process designated as nutrient signaling has been identified. The β-cell expresses components of the insulin signaling cascade and utilizes the metabolism of nutrients to affect insulin secretion. These combined transduction processes make the β-cell an unique cell to study metabolic and autocrine regulation of mTOR signaling. Our studies have described the ability of insulin and IGFs in concert with the nutrients leucine, glutamine, and glucose to modulate protein translation through mTOR in β-cells. These findings suggest that mitochondria-derived factors, ATP in particular, may be responsible for nutrient signaling. The significance of these findings is that the optimization of mitochondrial function is not only important for insulin secretion but may significantly impact the growth and proliferation of β-cells through these mTOR signaling pathways.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3