Direct Evidence for Insulin-Induced Capillary Recruitment in Skin of Healthy Subjects During Physiological Hyperinsulinemia

Author:

Serné Erik H.12,IJzerman Richard G.12,Gans Reinold O.B.3,Nijveldt Robin1,de Vries Greetje1,Evertz Reinder1,Donker Ab J.M.12,Stehouwer Coen D.A.12

Affiliation:

1. Department of Medicine, Academic Hospital Vrije Universiteit, Amsterdam, the Netherlands

2. Institute for Cardiovascular Research-Vrije Universiteit, Amsterdam, the Netherlands

3. Department of Medicine, University Hospital Groningen, Groningen, the Netherlands

Abstract

It has been proposed that insulin-mediated changes in muscle perfusion modulate insulin-mediated glucose uptake. However, the putative effects of insulin on the microcirculation that permit such modulation have not been studied in humans. We examined the effects of systemic hyperinsulinemia on skin microvascular function in eight healthy nondiabetic subjects. In addition, the effects of locally administered insulin on skin blood flow were assessed in 10 healthy subjects. During a hyperinsulinemic clamp, we measured leg blood flow with venous occlusion plethysmography, skin capillary density with capillaroscopy, endothelium-(in)dependent vasodilatation of skin microcirculation with iontophoresis of acetylcholine and sodium nitroprusside combined with laser Doppler fluxmetry, and skin vasomotion by Fourier analysis of microcirculatory blood flow. To exclude nonspecific changes in the hemodynamic variables, a time-volume control study was performed. Insulin iontophoresis was used to study the local effects of insulin on skin blood flow. Compared to the control study, systemic hyperinsulinemia caused an increase in leg blood flow (−0.54 ± 0.93 vs. 1.97 ± 1.1 ml · min−1 · dl−1; P < 0.01), an increase in the number of perfused capillaries in the resting state (−3.7 ± 3.0 vs. 3.4 ± 1.4 per mm2; P < 0.001) and during postocclusive reactive hyperemia (−0.8 ± 2.2 vs. 5.1 ± 3.7 per mm2; P < 0.001), an augmentation of the vasodilatation caused by acetylcholine (722 ± 206 vs. 989 ± 495%; P < 0.05) and sodium nitroprusside (618 ± 159 vs. 788 ± 276%; P < 0.05), and a change in vasomotion by increasing the relative contribution of the 0.01- to 0.02-Hz and 0.4- to 1.6-Hz spectral components (P < 0.05). Compared to the control substance, locally administered insulin caused a rapid increase (∼13.5 min) in skin microcirculatory blood flow (34.4 ± 42.5 vs. 82.8 ± 85.7%; P < 0.05). In conclusion, systemic hyperinsulinemia in skin 1) induces recruitment of capillaries, 2) augments nitric oxide−mediated vasodilatation, and 3) influences vasomotion. In addition, locally administered insulin 4) induces a rapid increase in total skin blood flow, independent of systemic effects.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3