Prolonged Islet Allograft Survival in Diabetic NOD Mice by Targeting CD45RB and CD154

Author:

Molano R. Damaris1,Pileggi Antonello1,Berney Thierry1,Poggioli Raffaella1,Zahr Elsie1,Oliver Robert1,Ricordi Camillo1,Rothstein David M.2,Basadonna Giacomo P.2,Inverardi Luca1

Affiliation:

1. Cell Transplant Center, Diabetes Research Institute, University of Miami School of Medicine, Miami, Florida

2. Department of Transplant Surgery, Yale Medical School, New Haven, Connecticut

Abstract

Clinical islet transplantation is a successful procedure that can improve the quality of life in recipients with diabetes. A drawback of the procedure is the need for chronic administration of immunosuppressive drugs that, among other side effects, are potentially diabetogenic. Definition of immunosuppressive protocols that utilize nondiabetogenic compounds could further improve islet transplantation outcome. We used the NOD mouse to assess the effect of targeting the T-lymphocyte surface receptors CD45RB and CD154 in preventing loss of allogeneic islet grafts as a result of recurrence of autoimmunity and allorejection. Administration of the two antibodies led to significantly prolonged allograft survival, with a percentage of grafts surviving long-term. The therapeutic efficacy of the treatment was paralleled by a shift in CD45RB isoform expression on T-lymphocytes, increased in vitro responsiveness to interleukin-7, and increased in vitro γ-interferon production after anti-CD3 antibody stimulation. Furthermore, graft infiltration by CD8+ T-cells was remarkably reduced. Recipient mice bearing functioning allografts were otherwise immunocompetent, as assessed in vivo and in vitro by numerous tests, including intragraft cytokine production, responsiveness to polyclonal stimulation and alloantigens, and analysis of cell subset phenotype. These data show that nondiabetogenic regimens of immunomodulation can lead to prolonged islet allograft survival in the challenging NOD mouse model.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3