Peroxisome Proliferator–Activated Receptor (PPAR)α Activation Increases Adiponectin Receptors and Reduces Obesity-Related Inflammation in Adipose Tissue

Author:

Tsuchida Atsushi1,Yamauchi Toshimasa12,Takekawa Sato1,Hada Yusuke1,Ito Yusuke1,Maki Toshiyuki1,Kadowaki Takashi123

Affiliation:

1. Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

2. Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi, Japan

3. National Institute of Health and Nutrition, Tokyo, Japan

Abstract

We examined the effects of activation of peroxisome proliferator–activated receptor (PPAR)α, PPARγ, and both of them in combination in obese diabetic KKAy mice and investigated the mechanisms by which they improve insulin sensitivity. PPARα activation by its agonist, Wy-14,643, as well as PPARγ activation by its agonist, rosiglitazone, markedly improved insulin sensitivity. Interestingly, dual activation of PPARα and -γ by a combination of Wy-14,643 and rosiglitazone showed increased efficacy. Adipocyte size in Wy-14,643–treated KKAy mice was much smaller than that of vehicle- or rosiglitazone-treated mice, suggesting that activation of PPARα prevents adipocyte hypertrophy. Moreover, Wy-14,643 treatment reduced inflammation and the expression of macrophage-specific genes in white adipose tissue (WAT). Importantly, Wy-14,643 treatment upregulated expression of the adiponectin receptor (AdipoR)-1 and AdipoR2 in WAT, which was decreased in WAT of KKAy mice compared with that in nondiabetic control mice. Furthermore, Wy-14,643 directly increased expression of AdipoRs and decreased monocyte chemoattractant protein-1 expression in adipocytes and macrophages. Rosiglitazone increased serum adiponectin concentrations and the ratio of high molecular weight multimers of adiponectin to total adiponectin. A combination of rosiglitazone and Wy-14,643 increased both serum adiponectin concentrations and AdipoR expression in WAT. These data suggest that PPARα activation prevents inflammation in WAT and that dual activation of PPARα and -γ enhances the action of adiponectin by increasing both adiponectin and AdipoRs, which can result in the amelioration of obesity-induced insulin resistance.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 366 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3