Skeletal Muscle Insulin Signaling Defects Downstream of Phosphatidylinositol 3-Kinase at the Level of Akt Are Associated With Impaired Nonoxidative Glucose Disposal in HIV Lipodystrophy

Author:

Haugaard Steen B.123,Andersen Ove13,Madsbad Sten2,Frøsig Christian4,Iversen Johan1,Nielsen Jens Ole1,Wojtaszewski Jørgen F.P.4

Affiliation:

1. Department of Infectious Diseases, Hvidovre University Hospital, Hvidovre, Copenhagen

2. Department of Endocrinology and Internal Medicine, Hvidovre University Hospital, Hvidovre, Copenhagen

3. Clinical Research Unit, Hvidovre University Hospital, Hvidovre, Copenhagen

4. Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, Department of Human Physiology, University of Copenhagen, Copenhagen, Denmark

Abstract

More than 40% of HIV-infected patients on highly active antiretroviral therapy (HAART) experience fat redistribution (lipodystrophy), a syndrome associated with insulin resistance primarily affecting insulin-stimulated nonoxidative glucose metabolism (NOGMins). Skeletal muscle biopsies, obtained from 18 lipodystrophic nondiabetic patients (LIPO) and 18 nondiabetic patients without lipodystrophy (NONLIPO) before and during hyperinsulinemic (40 mU · m−2 · min−1)-euglycemic clamps, were analyzed for insulin signaling effectors. All patients were on HAART. Both LIPO and NONLIPO patients were normoglycemic (4.9 ± 0.1 and 4.8 ± 0.1 mmol/l, respectively); however, NOGMins was reduced by 49% in LIPO patients (P < 0.001). NOGMins correlated positively with insulin-stimulated glycogen synthase activity (I-form, P < 0.001, n = 36). Glycogen synthase activity (I-form) correlated inversely with phosphorylation of glycogen synthase sites 2+2a (P < 0.001, n = 36) and sites 3a+b (P < 0.001, n = 36) during clamp. Incremental glycogen synthase-kinase–3α and –3β phosphorylation was attenuated in LIPO patients (Ps < 0.05). Insulin-stimulated Akt Ser473 and Akt Thr308 phosphorylation was decreased in LIPO patients (P < 0.05), whereas insulin receptor substrate-1–associated phosphatidylinositol (PI) 3-kinase activity increased significantly (P < 0.001) and similarly (NS) in both groups during clamp. Thus, low glycogen synthase activity explained impaired NOGMins in HIV lipodystrophy, and insulin signaling defects were downstream of PI 3-kinase at the level of Akt. These results suggest mechanisms for the insulin resistance greatly enhancing the risk of type 2 diabetes in HIV lipodystrophy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3