Affiliation:
1. Endocrinologie et Métabolisme, Institut Cochin, INSERM U567, Paris, France
2. Institut de Recherches Internationales Servier, Division Métabolisme, Courbevoie, France
Abstract
The effects of benfluorex and two of its metabolites (S 422-1 and S 1475-1) on fatty acid and glucose metabolic fluxes and specific gene expression were studied in hepatocytes isolated from 24-h fasted rats. Both benfluorex and S 422-1 (0.1 or 1 mmol/l) reduced β-oxidation rates and ketogenesis, whereas S 1475-1 had no effect. At the same concentration, benfluorex and S 422-1 were more efficient in reducing gluconeogenesis from lactate/pyruvate than S 1475-1. Benfluorex inhibited gluconeogenesis at the level of pyruvate carboxylase (45% fall in acetyl-CoA concentration) and of glyceraldehyde-3-phosphate dehydrogenase (decrease in ATP/ADP and NAD+/NADH ratios). Accordingly, neither benfluorex nor S 422-1 inhibited gluconeogenesis from dihydroxyacetone, but both stimulated gluconeogenesis from glycerol. In hepatocytes cultured in the presence of benfluorex or S 422-1 (10 or 100 μmol/l), the expression of genes encoding enzymes of fatty acid oxidation (carnitine palmitoyltransferase [CPT] I), ketogenesis (hydroxymethylglutaryl-CoA synthase), and gluconeogenesis (glucose-6-phosphatase, PEPCK) was decreased, whereas mRNAs encoding glucokinase and pyruvate kinase were increased. By contrast, Glut-2, acyl-CoA synthetase, and CPT II gene expression was not affected by benfluorex or S 422-1. In conclusion, this work suggests that benfluorex mainly via S 422-1 reduces gluconeogenesis by affecting gene expression and metabolic status of hepatocytes.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献