Insulin-Independent Induction of Sterol Regulatory Element-Binding Protein-1c Expression in the Livers of Streptozotocin-Treated Mice

Author:

Matsuzaka Takashi1,Shimano Hitoshi1,Yahagi Naoya2,Amemiya-Kudo Michiyo2,Okazaki Hiroaki2,Tamura Yoshiaki2,Iizuka Yoko2,Ohashi Ken2,Tomita Sachiko2,Sekiya Motohiro2,Hasty Alyssa2,Nakagawa Yoshimi1,Sone Hirohito1,Toyoshima Hideo1,Ishibashi Shun2,Osuga Jun-ichi2,Yamada Nobuhiro1

Affiliation:

1. Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan

2. Department of Metabolic Diseases, University of Tokyo, Tokyo, Japan

Abstract

Insulin and glucose together have been previously shown to regulate hepatic sterol regulatory element-binding protein (SREBP)-1c expression. We sought to explore the nutritional regulation of lipogenesis through SREBP-1c induction in a setting where effects of sugars versus insulin could be distinguished. To do so, mice were insulin depleted by streptozotocin (STZ) administration and subjected to a fasting-refeeding protocol with glucose, fructose, or sucrose. Unexpectedly, the insulin-depleted mice exhibited a marked induction of SREBP-1c on all sugars, and this increase in SREBP-1c was even more dramatic than in the non-STZ-administered controls. The time course of changes in SREBP-1 induction varied depending on the type of sugars in both control and STZ-administered mice. Glucose refeeding gave a peak of SREBP-1c induction, whereas fructose refeeding caused slow and gradual increments, and sucrose refeeding fell between these two responses. Expression of various lipogenic enzymes were also gradually increased over time, irrespective of the types of sugars, with greater intensities in STZ-administered than in nontreated mice. In contrast, induction of hepatic glucokinase and suppression of phoshoenolpyruvate carboxykinase were insulin dependent in an early refed state. These data clearly demonstrate that nutritional regulation of SREBP-1c and lipogenic genes may be completely independent of insulin as long as sufficient carbohydrates are available.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3