Uncoupling of Nutrient Metabolism From Insulin Secretion by Overexpression of Cytosolic Phospholipase A2

Author:

Milne Helen M.1,Burns Chris J.1,Squires Paul E.2,Evans Nicholas D.3,Pickup John3,Jones Peter M.1,Persaud Shanta J.1

Affiliation:

1. Beta Cell Development and Function Group, Division of Reproductive Health, Endocrinology and Development, King’s College London, London, U.K

2. Biological Sciences, University of Warwick, Warwick, U.K

3. Metabolic Unit, Guy’s King’s and St. Thomas’ School of Medicine, King’s College London, London, U.K

Abstract

We have generated MIN6 β-cells that stably overexpress cytosolic phospholipase A2 (cPLA2) and show a ninefold increase in cPLA2 activity. Overexpression of cPLA2 did not affect the capacity of MIN6 cells to show elevations in intracellular Ca2+ concentration ([Ca2+]i) in response to tolbutamide and KCl, and these depolarizing stimuli produced insulin secretion profiles in cPLA2-overexpressing cells similar to those they produced in passage-matched nontransfected MIN6 cells. However, cPLA2-overexpressing MIN6 cells did not respond to elevations in extracellular glucose with increases in ATP, [Ca2+]i, or insulin secretion. Nontransfected MIN6 cells showed a rapid and sustained increase in NAD(P)H autofluorescence in response to 25 mmol/l glucose, and this was reduced by ∼95% in MIN6 cells overexpressing cPLA2. This effect was mimicked in nontransfected MIN6 cells by p-(trifluoromethoxy) phenylylhydrazone, a mitochondrial uncoupler. Quantitative RT-PCR indicated that mRNA for uncoupling protein-2 (UCP-2) was increased in the cPLA2-overexpressing MIN6 cells, and this could be prevented by exposure to 100 μmol/l methyl arachidonyl fluorophosphate, a cPLA2 inhibitor. Glucose caused a decrease in rhodamine 123 fluorescence in control cells, but not in those overexpressing cPLA2, consistent with the transfected cells being unable to maintain mitochondrial proton gradients as a consequence of UCP-2 upregulation. Our data indicate that overexpression of cPLA2 results in severe impairment of the calcium and secretory responses of β-cells to glucose through upregulation of UCP-2 and uncoupling of mitochondrial metabolism from ATP generation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3