Glucose-6-phosphate and Ca2+ sequestration are mutually enhanced in microsomes from liver, brain, and heart.

Author:

Chen P Y1,Csutora P1,Veyna-Burke N A1,Marchase R B1

Affiliation:

1. Department of Cell Biology, the University of Alabama at Birmingham, 35294-0005, USA.

Abstract

Microsomes prepared from three rat tissues were examined for their ability to import glucose-6-phosphate (G-6-P). Microsomes from liver, which possess a high level of glucose-6-phosphatase activity, were compared with those from cerebral cortex and cardiac muscle, which are not involved in the export of glucose and in which glucose-6-phosphatase activity is relatively low. In all three, a selective permeability to G-6-P was detected by light scattering. However, the sugar-phosphate specificity of the transport process differed. G-6-P was able to enhance ATP-dependent Ca2+ sequestration in all three types of microsomes. In addition, enzymatic detection of G-6-P after the rapid filtration of microsomes determined that, in the absence of Ca2+ and ATP, a level of intramicrosomal G-6-P approaching a passive equilibrium with the extramicrosomal G-6-P concentration was rapidly achieved in all three tissues. However, under conditions in which Ca2+ was being actively accumulated, the intramicrosomal levels of G-6-P exceeded the equilibrium value by three- to fourfold. This enhanced sequestration was not observed in the presence of Ca2+ or ATP alone or in the presence of a Ca2+ ionophore or an inhibitor of the microsomal Ca2+ ATPase. These data are consistent with a selective import pathway into the endoplasmic/sarcoplasmic reticulum for G-6-P independent of glucose-6-phosphatase activity. In addition, they suggest an alternate explanation for the enhanced sequestration of Ca2+ by the endoplasmic/sarcoplasmic reticulum of intact cells seen when extracellular glucose is increased.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3