Regulation of putative fatty acid transporters and Acyl-CoA synthetase in liver and adipose tissue in ob/ob mice.

Author:

Memon R A1,Fuller J1,Moser A H1,Smith P J1,Grunfeld C1,Feingold K R1

Affiliation:

1. Department of Medicine, University of California San Francisco, USA. rmemon@itsa.ucsf.edu

Abstract

The hyperlipidemia associated with obesity and type 2 diabetes is caused by an increase in hepatic triglyceride synthesis and secretion that is secondary to an increase in de novo lipogenesis, a decrease in fatty acid (FA) oxidation, and an increase in the flux of peripherally derived FA to the liver. The uptake of FA across the plasma membrane may be mediated by three distinct proteins--FA translocase (FAT), plasma membrane FA binding protein (FABP-pm), and FA transport protein (FATP)--that have recently been characterized. Acyl-CoA synthetase (ACS) enhances the uptake of FAs by catalyzing their activation to acyl-CoA esters for subsequent use in anabolic or catabolic pathways. In this study, we examine the mRNA levels of FAT, FABP-pm, FATP, and ACS in the liver and adipose tissue of genetically obese (ob/ob) mice and their control littermates. FAT mRNA levels were 15-fold higher in liver and 60-80% higher in adipose tissue of ob/ob mice. FABP-pm mRNA levels were twofold higher in liver and 50% higher in adipose tissue of ob/ob mice. FATP mRNA levels were not increased in liver or adipose tissue. ACS mRNA levels were higher in adipose tissue but remained unchanged in liver. However, the distribution of ACS activity associated with mitochondria and microsomes in liver was altered in ob/ob mice. In control littermates, 61% of ACS activity was associated with mitochondria and 39% with microsomes, whereas in ob/ob mice 34% of ACS activity was associated with mitochondria and 66% with microsomes; this distribution would make more FA available for esterification, rather than oxidation, in ob/ob mouse liver. Taken together, our results suggest that the upregulation of FAT and FABP-pm mRNAs may increase the uptake of FA in adipose tissue and liver in ob/ob mice, which, coupled with an increase in microsomal ACS activity in liver, will enhance the esterification of FA and support the increased triglyceride synthesis and VLDL production that characterizes obesity and type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3