Acute vasoconstriction-induced insulin resistance in rat muscle in vivo.

Author:

Rattigan S1,Clark M G1,Barrett E J1

Affiliation:

1. Department of Biochemistry, University of Tasmania, Hobart, Tasmania, Australia. s.rattigan@utas.edu.au

Abstract

Insulin-mediated changes in blood flow are associated with altered blood flow distribution and increased capillary recruitment in skeletal muscle. Studies in perfused rat hindlimb have shown that muscle metabolism can be regulated by vasoactive agents that control blood flow distribution within the hindlimb. In the present study, the effects of a vasoconstrictive agent that has no direct effect on skeletal muscle metabolism but that alters perfusion distribution in rat hindlimb was investigated in vivo to determine its effects on insulin-mediated vascular action and glucose uptake. We measured the effects of alpha-methylserotonin (alpha-met5HT) on mean arterial blood pressure, heart rate, femoral blood flow, hindlimb vascular resistance, and glucose uptake in control and euglycemic insulin-clamped (10 mU x min(-1) x kg(-1)) anesthetized rats. Blood flow distribution within the hindlimb muscles was assessed by measuring the metabolism of 1-methylxanthine (1-MX), an exogenously added substrate for capillary xanthine oxidase. Alpha-met5HT (20 microg x min(-1) x kg(-1)) infusion alone increased mean arterial blood pressure by 25% and increased hindlimb vascular resistance but caused no change in femoral blood flow. These changes were associated with decreased hindlimb 1-MX metabolism indicating less capillary flow. Insulin infusion caused decreased hindlimb vascular resistance that was associated with increased femoral blood flow and 1-MX metabolism. Treatment with alpha-met5HT infusion commenced before insulin infusion prevented the increase in femoral blood flow and inhibited the stimulation of 1-MX metabolism. Alpha-met5HT infusion had no effect on hindlimb glucose uptake but markedly inhibited the insulin stimulation of glucose uptake (P < 0.05) and was associated with decreased glucose infusion rates to maintain euglycemia (P < 0.05). A significant correlation (P < 0.05) was observed between 1-MX metabolism and hindlimb glucose uptake but not between femoral blood flow and glucose uptake. The results indicate that in vivo, certain types of vasoconstriction in muscle such as elicited by 5HT2 agonists, which prevent normal insulin recruitment of capillary flow, cause impaired muscle glucose uptake. Moreover, if vasoconstriction of this kind results from stress-induced increase in sympathetic outflow, then this may provide a clue as to the link between hypertension and insulin resistance that is often observed in humans.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3