Effect of Combined Antisense Oligonucleotides Against High-Glucose–and Diabetes-Induced Overexpression of Extracellular Matrix Components and Increased Vascular Permeability

Author:

Oshitari Toshiyuki12,Polewski Peter1,Chadda Manish1,Li An-Fei13,Sato Tsuyoshi14,Roy Sayon1

Affiliation:

1. Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts

2. Department of Ophthalmology, Center for Sensory Organ Diseases, Sannoh Medical Center, Chiba, Japan

3. Department of Ophthalmology, National Yang-Ming University, Taipei, Taiwan

4. Eye Research Laboratory, Shin-Yahashiradai Hospital, Chiba, Japan

Abstract

The effect of combined antisense oligonucleotides (AS-oligos) against overexpression of extracellular matrix (ECM) components, fibronectin, laminin, and collagen IV and on cell monolayer permeability was examined in rat microvascular endothelial cells (RMECs) grown in high glucose medium and on retinal vascular permeability in diabetic rats. RMECs grown in high glucose for 10 days and transfected with combined AS-oligos showed a significantly reduced fibronectin, laminin, and collagen IV protein level. In parallel studies, high-glucose–induced excess monolayer permeability was also reduced in RMECs transfected with the combined AS-oligos. Similarly, diabetic rats intravitreally injected with the combined AS-oligos and examined after 2 months of diabetes showed significant reduction in retinal fibronectin, laminin, and collagen IV expression. In addition, vascular permeability, as determined from extravasation of fluorescein isothiocyanate–BSA in the surrounding areas of the retinal capillaries, was partially reduced in the combined AS-oligos–treated diabetic retinas. Our results indicate that the combined AS-oligos strategy is effective in simultaneously reducing fibronectin, collagen IV, and laminin overexpression and reducing vascular leakage in the retinal capillaries of diabetic rat retinas. The findings suggest that abnormal synthesis of ECM components may contribute to vascular leakage in the diabetic retina.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3