Changes in the Dimeric State of Neuronal Nitric Oxide Synthase Affect the Kinetics of Secretagogue-Induced Insulin Response

Author:

Lajoix Anne-Dominique12,Pugnière Martine2,Roquet Françoise2,Mani Jean-Claude2,Dietz Samuel12,Linck Nathalie2,Faurie Fleur2,Ribes Gérard2,Petit Pierre2,Gross René2

Affiliation:

1. Innodia SAS, Montpellier, France

2. UMR 5160 CNRS, Montpellier, France

Abstract

We previously showed that pancreatic β-cells express a neuronal isoform of nitric oxide synthase (nNOS) that controls insulin secretion by exerting two enzymatic activities: nitric oxide (NO) production and cytochrome c reductase activity. We now bring evidence that two inhibitors of nNOS, N-ω-nitro-l-arginine methyl ester (l-NAME) and 7-nitroindazole (7-NI), increase glucose-induced insulin secretion but affect β-cell function differently. In the presence of l-NAME, insulin response is monophasic, whereas 7-NI preserves the normal biphasic secretory pattern. In addition, the alterations of β-cell functional response induced by the inhibitors also differ by their sensitivity to a substitutive treatment with sodium nitroprusside, a chemical NO donor. These differences are probably related to the nature of the two inhibitors. Indeed, using low-temperature SDS-PAGE and real-time analysis of nNOS dimerization by surface plasmon resonance, we could show that 7-NI, which competes with arginine and tetrahydrobiopterin (BH4), an essential cofactor for nNOS dimer formation, inhibits dimerization of the enzyme, whereas the substrate-based inhibitor l-NAME stabilizes the homodimeric state of nNOS. The latter effect could be reproduced by the two endogenous inhibitors of NOS, N-ω-methyl-l-arginine and asymmetric dimethylarginine, and resulted interestingly in a reduced ability of the protein inhibitor of nNOS (PIN) to dissociate nNOS dimers. We conclude that intracellular factors able to induce abnormalities in the nNOS monomer/dimer equilibrium could lead to pancreatic β-cell dysfunction.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3