Coronary Microvascular Adaptation to Myocardial Metabolic Demand Can Be Restored by Inhibition of Iron-Catalyzed Formation of Oxygen Free Radicals in Type 2 Diabetic Patients

Author:

Nitenberg Alain1,Ledoux Séverine1,Valensi Paul2,Sachs Régis2,Antony Isabelle1

Affiliation:

1. Department of Physiology and Functional Investigations, University Xavier-Bichat, Colombes, France

2. Department of Endocrinology-Diabetology-Nutrition, Jean Verdier Hospital, University of Bobigny, Bondy, France

Abstract

Dilation of coronary vessels is impaired in diabetic patients when myocardial metabolic demand is increased. Deferoxamine (DFX) restores a normal dilation of epicardial coronary arteries. To assess the effects of DFX on metabolic coronary microvascular dilation in type 2 diabetic patients, coronary blood flow was measured using intracoronary Doppler and quantitative angiography in 17 type 2 diabetic patients with normal coronary arteries and without any other coronary risk factors. Measurements were made at baseline and during a cold pressor test (CPT), before and after intravenous administration of DFX. With a similar rate-pressure product (RPP) increase during CPT before and after DFX (+21.1 ± 8.7 vs. +20.5 ± 8.9%, respectively), coronary blood flow increase was significantly enhanced after DFX (+31.8 ± 16.7 vs. +6.3 ± 12.9% before DFX, P < 0.001). Moreover, coronary resistance increased during CPT before DFX and decreased after DFX (+14.8 ± 21.9 vs. −7.9 ± 10.9%, respectively, P < 0.001). Lastly, the negative relationship between coronary blood flow and RPP before DFX (R = 0.546, P < 0.05) was changed in a positive relationship after DFX (R = 0.518, P < 0.05). In conclusion, in type 2 diabetic patients, inhibition of iron-catalyzed oxidative reactions by DFX restored dilation of the coronary microcirculation and a normal matching between myocardial metabolic demand and coronary blood flow.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3