Effects of glucose intolerance on myocardial function and collagen-linked glycation.

Author:

Avendano G F1,Agarwal R K1,Bashey R I1,Lyons M M1,Soni B J1,Jyothirmayi G N1,Regan T J1

Affiliation:

1. Department of Medicine, UMDNJ-New Jersey Medical School, Newark 07103-2714, USA.

Abstract

In experimental diabetes, diastolic dysfunction of the left ventricle has been associated with collagen-linked glycation. To determine whether less severe hyperglycemia may have similar effects, we gave alloxan to mongrel dogs (group 2) to induce impaired glucose tolerance (IGT) for comparison with normal subjects (group 1). After 6 months, hemodynamic studies were performed in the anesthetized animals. Basal heart rate, aortic pressure, and ejection fraction were comparable in the two groups, but calculated chamber stiffness was increased in group 2, associated with a reduced end diastolic volume and increased pressure. During infusion of dextran, the volume and pressure responses were similarly abnormal in group 2. In the myocardium, the collagen concentration rose with an increased interstitial distribution histologically. To assess glycation, collagen was extracted, digested with collagenase, and measured for fluorescence. Advanced glycation end products were increased in group 2 to 10.6 +/- 1.6 vs. 6.9 +/- 0.7 fluorescent units (FU)/mg collagen in group 1 (P < 0.01). To assess whether this could be pharmacologically prevented, we administered enalapril to inhibit ACE during the 6 months of glucose intolerance to group 3. This resulted in normal glycation and significant reduction in chamber stiffness increment. We gave group 4 animals aminoguanidine daily for 6 months, which prevented abnormal collagen glycation and chamber stiffness. Thus, in animals with IGT, collagen-linked glycosylation appeared to be a major factor affecting diastolic function and was shown to be amenable to pharmacological intervention.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3