Troglitazone Not Only Increases GLUT4 but Also Induces Its Translocation in Rat Adipocytes

Author:

Shintani Mitsuyo1,Nishimura Haruo2,Yonemitsu Shin1,Ogawa Yoshihiro1,Hayashi Tatsuya1,Hosoda Kiminori1,Inoue Gen1,Nakao Kazuwa1

Affiliation:

1. Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan, and the

2. Department of Diabetes and Endocrinology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan

Abstract

Thiazolidinediones, insulin-sensitizing agents, have been reported to increase glucose uptake along with the expression of glucose transporters in adipocytes and cardiomyocytes. Recently, we have further suggested that the translocation of GLUT4 is stimulated by thiazolidinediones in L6 myocytes. However, the direct effects of thiazolidinediones on translocation of glucose transporters have not yet been determined. In this study, using hemagglutinin epitope-tagged GLUT4 (GLUT4-HA), we provide direct evidence of the effect of troglitazone on the translocation of GLUT4 in rat epididymal adipocytes. Primary cultures of rat adipocytes were transiently transfected with GLUT4-HA and overexpressed eightfold compared with endogenous GLUT4 in transfected cells. A total of 24 h of treatment with troglitazone (10−4 mol/l) increased the cell surface level of GLUT4-HA by 1.5 ± 0.03–fold (P < 0.01) without changing the total amount of GLUT4-HA, whereas it increased the protein level of endogenous GLUT4 (1.4-fold) without changing that of GLUT1. Thus, the direct effect on the translocation can be detected apart from the increase in endogenous GLUT4 content using GLUT4-HA. Troglitazone not only increased the translocation of GLUT4-HA on the cell surface in the basal state but also caused a leftward shift in the dose-response relations between GLUT4-HA translocation and insulin concentration in the medium (ED50: from ∼0.1 to 0.03 nmol/l). These effects may partly contribute to the antidiabetic activity of troglitazone in patients with obesity and type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3