Affiliation:
1. Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
2. Division of Digestive Diseases and Nutrition, University of North Carolina, Chapel Hill, North Carolina
Abstract
Cytokine-induced β-cell death is an important event in the pathogenesis of type 1 diabetes. The transcription factor nuclear factor-κB (NF-κB) is activated by interleukin-1β (IL-1β), and its activity promotes the expression of several β-cell genes, including pro- and anti-apoptotic genes. To elucidate the role of cytokine (IL-1β + γ-interferon [IFN-γ])-induced expression of NF-κB in β-cell apoptosis, rat β-cells were infected with the recombinant adenovirus AdIκB(SA)2, which contained a nondegradable mutant form of inhibitory κB (IκB(SA)2, with S32A and S36A) that locks NF-κB in a cytosolic protein complex, preventing its nuclear action. Expression of IκB(SA)2 inhibited cytokine-stimulated nuclear translocation and DNA-binding of NF-κB. Cytokine-induced gene expression of several NF-κB targets, namely inducible nitric oxide synthase, Fas, and manganese superoxide dismutase, was prevented by AdIκB(SA)2, as established by reverse transcriptase–polymerase chain reaction, protein blot, and measurement of nitrite in the medium. Finally, β-cell survival after IL-1β + IFN-γ treatment was significantly improved by IκB(SA)2 expression, mostly through inhibition of the apoptotic pathway. Based on these findings, we conclude that NF-κB activation, under in vitro conditions, has primarily a pro-apoptotic function in β-cells.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
248 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献