Affiliation:
1. Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
2. Dana-Farber Cancer Institute and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
4. Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract
Tumor necrosis factor-α (TNF-α) is a contributing cause of the insulin resistance seen in obesity and obesity-linked type 2 diabetes, but the mechanism(s) by which TNF-α induces insulin resistance is not understood. By using 3T3-L1 adipocytes and oligonucleotide microarrays, we identified 142 known genes reproducibly upregulated by at least threefold after 4 h and/or 24 h of TNF-α treatment, and 78 known genes downregulated by at least twofold after 24 h of TNF-α incubation. TNF-α-induced genes include transcription factors implicated in preadipocyte gene expression or NF-κB activation, cytokines and cytokine-induced proteins, growth factors, enzymes, and signaling molecules. Importantly, a number of adipocyte-abundant genes, including GLUT4, hormone sensitive lipase, long-chain fatty acyl-CoA synthase, adipocyte complement-related protein of 30 kDa, and transcription factors CCAAT/enhancer binding protein-α, receptor retinoid X receptor-α, and peroxisome profilerator-activated receptor γ were significantly downregulated by TNF-α treatment. Correspondingly, 24-h exposure of 3T3-L1 adipocytes to TNF-α resulted in reduced protein levels of GLUT4 and several insulin signaling proteins, including the insulin receptor, insulin receptor substrate 1 (IRS-1), and protein kinase B (AKT). Nuclear factor-κB (NF-κB) was activated within 15 min of TNF-α addition. 3T3-L1 adipocytes expressing IκBα-DN, a nondegradable NF-κB inhibitor, exhibited normal morphology, global gene expression, and insulin responses. However, absence of NF-κB activation abolished suppression of >98% of the genes normally suppressed by TNF-α and induction of 60–70% of the genes normally induced by TNF-α. Moreover, extensive cell death occurred in IκBα-DN-expressing adipocytes after 2 h of TNF-α treatment. Thus the changes in adipocyte gene expression induced by TNF-α could lead to insulin resistance. Further, NF-κB is an obligatory mediator of most of these TNF-α responses.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
444 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献