Prevention of Obesity and Insulin Resistance in Mice Lacking Plasminogen Activator Inhibitor 1

Author:

Ma Li-Jun1,Mao Su-Li1,Taylor Kevin L.1,Kanjanabuch Talerngsak1,Guan YouFei2,Zhang YaHua2,Brown Nancy J.2,Swift Larry L.1,McGuinness Owen P.3,Wasserman David H.3,Vaughan Douglas E.2,Fogo Agnes B.1

Affiliation:

1. Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee

2. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee

3. Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee

Abstract

Increased plasminogen activator inhibitor 1 (PAI-1) has been linked to not only thrombosis and fibrosis but also to obesity and insulin resistance. Increased PAI-1 levels have been presumed to be consequent to obesity. We investigated the interrelationships of PAI-1, obesity, and insulin resistance in a high-fat/high-carbohydrate (HF) diet–induced obesity model in wild-type (WT) and PAI-1–deficient mice (PAI-1−/−). Obesity and insulin resistance developing in WT mice on an HF diet were completely prevented in mice lacking PAI-1. PAI-1−/− mice on an HF diet had increased resting metabolic rates and total energy expenditure compared with WT mice, along with a marked increase in uncoupling protein 3 mRNA expression in skeletal muscle, likely mechanisms contributing to the prevention of obesity. In addition, insulin sensitivity was enhanced significantly in PAI-1−/− mice on an HF diet, as shown by euglycemic-hyperinsulinemic clamp studies. Peroxisome proliferator–activated receptor (PPAR)-γ and adiponectin mRNA, key control molecules in lipid metabolism and insulin sensitivity, were maintained in response to an HF diet in white adipose tissue in PAI-1−/− mice, contrasting with downregulation in WT mice. This maintenance of PPAR-γ and adiponectin may also contribute to the observed maintenance of body weight and insulin sensitivity in PAI-1−/− mice. Treatment in WT mice on an HF diet with the angiotensin type 1 receptor antagonist to downregulate PAI-1 indeed inhibited PAI-1 increases and ameliorated diet-induced obesity, hyperglycemia, and hyperinsulinemia. PAI-1 deficiency also enhanced basal and insulin-stimulated glucose uptake in adipose cells in vitro. Our data suggest that PAI-1 may not merely increase in response to obesity and insulin resistance, but may have a direct causal role in obesity and insulin resistance. Inhibition of PAI-1 might provide a novel anti-obesity and anti–insulin resistance treatment.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3