Acute modulation of albumin microvascular leakage by advanced glycation end products in microcirculation of diabetic rats in vivo.

Author:

Bonnardel-Phu E1,Wautier J L1,Schmidt A M1,Avila C1,Vicaut E1

Affiliation:

1. Department of Biophysics, F. Widal Hospital, Paris, France.

Abstract

Advanced glycation end products (AGEs) are nonenzymatic glycosylated adducts of proteins that accumulate in vascular tissue during diabetes and aging. The aim of this work was to study the role of AGEs and of the oxidative mechanisms in diabetes-induced changes in vascular permeability. Intravital videomicroscopy was used to study albumin microvascular leakage in cremaster muscle. The extravasation of a fluorescent macromolecular tracer (fluorescein isothiocyanate-albumin) was measured for 1 h and, after computer-aided image analysis, was expressed as variations of normalized gray levels (arbitrary units). Extravasation of the macromolecular tracer was much higher in diabetic rats than in control rats (slope of extravasation versus time increased by >100%, P < 10(-4)). This increase was significantly inhibited when we blocked AGEs binding to their endothelial receptor by intravenous bolus of soluble recombinant receptor to AGEs (rR-RAGE) (slope of extravasation versus time decreased by 19, 30, and 40%, for 0.5, 2.5, and 5.15 mg/kg rR-RAGE, respectively) or by a 6 mg/kg intravenous bolus of antibody against RAGE (slope decreased by 53%). Systemic injection of probucol (an antioxidant) also significantly inhibited the increase in the extravasation of the macromolecular tracer occurring in experimental diabetes (slope decreased by 51%, P < 10(-4)). These results strongly suggest that in experimental diabetes the interaction of circulating AGEs and endothelial RAGE mediates albumin micro-vascular leakage, possibly via AGE-RAGE-dependent enhanced oxidant stress.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3