Endogenous Ghrelin in Pancreatic Islets Restricts Insulin Release by Attenuating Ca2+ Signaling in β-Cells
Author:
Dezaki Katsuya1, Hosoda Hiroshi2, Kakei Masafumi3, Hashiguchi Suzuko14, Watanabe Masatomo1, Kangawa Kenji2, Yada Toshihiko1
Affiliation:
1. Department of Physiology, Division of Integrative Physiology, Jichi Medical School, Kawachi, Tochigi, Japan 2. Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka, Japan 3. Department of Internal Medicine, Division of Endocrinology, Diabetes Geriatric Medicine, Akita University School of Medicine, Akita, Japan 4. Second Department of Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
Abstract
Ghrelin, isolated from the human and rat stomach, is the endogenous ligand for the growth hormone (GH) secretagogue receptor, which is expressed in a variety of tissues, including the pancreatic islets. It has been shown that low plasma ghrelin levels correlates with elevated fasting insulin levels and type 2 diabetes. Here we show a physiological role of endogenous ghrelin in the regulation of insulin release and blood glucose in rodents. Acylated ghrelin, the active form of the peptide, was detected in the pancreatic islets. Counteraction of endogenous ghrelin by intraperitoneal injection of specific GH secretagogue receptor antagonists markedly lowered fasting glucose concentrations, attenuated plasma glucose elevation, and enhanced insulin responses during the glucose tolerance test (GTT). Conversely, intraperitoneal exogenous ghrelin GH-independently elevated fasting glucose concentrations, enhanced plasma glucose elevation, and attenuated insulin responses during GTT. Neither GH secretagogue receptor antagonist nor ghrelin affected the profiles of the insulin tolerance test. In isolated islets, GH secretagogue receptor blockade and antiserum against acylated ghrelin markedly enhanced glucose-induced increases in insulin release and intracellular Ca2+ concentration ([Ca2+]i), whereas ghrelin at a relatively high concentration (10 nmol/l) suppressed insulin release. In single β-cells, ghrelin attenuated glucose-induced first-phase and oscillatory [Ca2+]i increases via the GH secretagogue receptor and in a pertussis toxin-sensitive manner. Ghrelin also increased tetraethylammonium-sensitive delayed outward K+ currents in single β-cells. These findings reveal that endogenous ghrelin in islets acts on β-cells to restrict glucose-induced insulin release at least partly via attenuation of Ca2+ signaling, and that this insulinostatic action may be implicated in the upward control of blood glucose. This function of ghrelin, together with inducing GH release and feeding, suggests that ghrelin underlies the integrative regulation of energy homeostasis.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference35 articles.
1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660,1999 2. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong S-S, Chaung L-YP, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJS, Dean DC, Melillo DG, Patchett AA, Nargund RP, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LHT: A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977,1996 3. Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K: Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 86:4753–4758,2001 4. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S: A role for ghrelin in the central regulation of feeding. Nature 409:194–198,2001 5. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML: Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709,2001
Cited by
312 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|