A Novel Glucagon Receptor Antagonist Inhibits Glucagon-Mediated Biological Effects

Author:

Qureshi Sajjad A.1,Rios Candelore Mari1,Xie Dan1,Yang Xiaodong1,Tota Laurie M.1,Ding Victor D.-H.1,Li Zhihua1,Bansal Alka2,Miller Corin3,Cohen Sheila M.3,Jiang Guoqiang1,Brady Ed4,Saperstein Richard4,Duffy Joseph L.5,Tata James R.5,Chapman Kevin T.5,Moller David E.1,Zhang Bei B.1

Affiliation:

1. Department of Metabolic Disorder and Molecular Endocrinology, Merck Research Laboratories, Rahway, New Jersey

2. Department of Human-Animal Infectious Disease Research, Merck Research Laboratories, Rahway, New Jersey

3. Department of Image Research, Merck Research Laboratories, Rahway, New Jersey

4. Department of Pharmacology, Merck Research Laboratories, Rahway, New Jersey

5. Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, New Jersey

Abstract

Glucagon maintains glucose homeostasis during the fasting state by promoting hepatic gluconeogenesis and glycogenolysis. Hyperglucagonemia and/or an elevated glucagon-to-insulin ratio have been reported in diabetic patients and animals. Antagonizing the glucagon receptor is expected to result in reduced hepatic glucose overproduction, leading to overall glycemic control. Here we report the discovery and characterization of compound 1 (Cpd 1), a compound that inhibits binding of 125I-labeled glucagon to the human glucagon receptor with a half-maximal inhibitory concentration value of 181 ± 10 nmol/l. In CHO cells overexpressing the human glucagon receptor, Cpd 1 increased the half-maximal effect for glucagon stimulation of adenylyl cyclase with a KDB of 81 ± 11 nmol/l. In addition, Cpd 1 blocked glucagon-mediated glycogenolysis in primary human hepatocytes. In contrast, a structurally related analog (Cpd 2) was not effective in blocking glucagon-mediated biological effects. Real-time measurement of glycogen synthesis and breakdown in perfused mouse liver showed that Cpd 1 is capable of blocking glucagon-induced glycogenolysis in a dosage-dependent manner. Finally, when dosed in humanized mice, Cpd 1 blocked the rise of glucose levels observed after intraperitoneal administration of exogenous glucagon. Taken together, these data suggest that Cpd 1 is a potent glucagon receptor antagonist that has the capability to block the effects of glucagon in vivo.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3