Diet-Induced Glucose Intolerance in Mice With Decreased β-Cell ATP-Sensitive K+ Channels

Author:

Remedi Maria S.12,Koster Joseph. C.1,Markova Kamelia1,Seino Susumu3,Miki Takashi3,Patton Brian L.1,McDaniel Michael L.2,Nichols Colin G.1

Affiliation:

1. Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri

2. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri

3. Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Abstract

ATP-sensitive K+ channels (KATP channels) control electrical activity in β-cells and therefore are key players in excitation-secretion coupling. Partial suppression of β-cell KATP channels in transgenic (AAA) mice causes hypersecretion of insulin and enhanced glucose tolerance, whereas complete suppression of these channels in Kir6.2 knockout (KO) mice leads to hyperexcitability, but mild glucose intolerance. To test the interplay of hyperexcitability and dietary stress, we subjected AAA and KO mice to a high-fat diet. After 3 months on the diet, both AAA and KO mice converted to an undersecreting and markedly glucose-intolerant phenotype. Although Kir6.2 is expressed in multiple tissues, its primary functional consequence in both AAA and KO mice is enhanced β-cell electrical activity. The results of our study provide evidence that, when combined with dietary stress, this hyperexcitability is a causal diabetic factor. We propose an “inverse U” model for the response to enhanced β-cell excitability: the expected initial hypersecretion can progress to undersecretion and glucose-intolerance, either spontaneously or in response to dietary stress.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3