Matrix Metalloproteinases 2 and 9 Are Dispensable for Pancreatic Islet Formation and Function In Vivo

Author:

Perez Sabina E.1,Cano David A.1,Dao-Pick Trang1,Rougier Jean-Phillipe2,Werb Zena2,Hebrok Matthias1

Affiliation:

1. Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California

2. Department of Anatomy, University of California San Francisco, San Francisco, California

Abstract

Pancreatic islet formation is a highly regulated process that is initiated at the end of gestation in rodents. Endocrine precursor cells first form within the epithelium of duct-like structures and then delaminate from the epithelium, migrate, and cluster during the early stages of islet formation. The molecular mechanisms that regulate endocrine cell migration and islet formation are not well understood. Cell culture studies suggest that matrix metalloproteinases (MMPs) 2 and 9 are required for islet formation. To address whether MMP2 and MMP9 function are essential for endocrine cell migration and islet formation in vivo, we analyzed pancreas development in MMP2/MMP9 double-deficient mice. Our results show that islet architecture and function are unperturbed in these knockout mice, demonstrating that both MMP2 and MMP9 functions are dispensable for islet formation and endocrine cell differentiation. Our studies also show that a number of other MMPs are expressed at the time islet formation is initiated. This observation suggests that other MMPs may substitute for MMP2 and MMP9 loss in pancreatic tissue. However, islet formation is unaffected in transgenic mice with modified tissue inhibitor of metalloproteinase-1 (TIMP1) levels, suggesting that MMP activity may contribute little to islet morphogenesis in vivo.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3