Demonstration of Glycated Insulin in Human Diabetic Plasma and Decreased Biological Activity Assessed by Euglycemic-Hyperinsulinemic Clamp Technique in Humans

Author:

Hunter Steven J.1,Boyd Alison C.2,O’Harte Finbarr P.M.2,McKillop Aine M.2,Wiggam M. Ivan1,Mooney Mark H.2,McCluskey Jane T.2,Lindsay John R.1,Ennis Cieran N.1,Gamble Raymond1,Sheridan Brian1,Barnett Christopher R.2,McNulty Helene2,Bell Patrick M.1,Flatt Peter R.2

Affiliation:

1. Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, U.K

2. School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, U.K

Abstract

The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA1c 8.1 ± 0.2%, plasma glucose 8.7 ± 1.3 mmol/l [means ± SE]) revealed two major insulin-like peaks with retention times of 14–16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)3+ species at 1,991.1 m/z, representing monoglycated insulin with an intact Mr of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (Mr 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 ± 2.3 pmol/l, corresponding to ∼9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe1-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 μg · kg−1 · min−1, followed by 2 h at 83.0 μg · kg−1 · min−1; corresponding to 0.4 and 2.0 mU · kg−1 · min−1). At the lower dose, the exogenous glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P < 0.01) and ∼70% more glycated insulin was required to induce a similar rate of insulin-mediated glucose uptake. Maximal responses at the higher rates of infusion were similar for glycated and control insulin. Inhibitory effects on endogenous glucose production, insulin secretion, and lipolysis, as indicated by measurements of C-peptide, nonesterified free fatty acids, and glycerol, were also similar. Receptor binding to CHO-T cells transfected with human insulin receptor and in vivo metabolic clearance revealed no differences between glycated and native insulin, suggesting that impaired biological activity is due to a postreceptor effect. The present demonstration of glycated insulin in human plasma and related impairment of physiological insulin-mediated glucose uptake suggests a role for glycated insulin in glucose toxicity and impaired insulin action in type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3