Variation in the eNOS Gene Modifies the Association Between Total Energy Expenditure and Glucose Intolerance

Author:

Franks Paul W.12,Luan Jian’an1,Barroso Inês3,Brage Søren1,Sanchez Jose Luis Gonzalez4,Ekelund Ulf1,Ríos Manuel Serrano4,Schafer Alan J.5,O’Rahilly Stephen6,Wareham Nicholas J.1

Affiliation:

1. Medical Research Council Epidemiology Unit, Cambridge, U.K

2. Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona

3. Wellcome Trust Sanger Institute, Metabolic Disease Group, Cambridge, U.K

4. Departamento de Medicina Interna II, Hospital Universitario Clínico San Carlos, Madrid, Spain

5. Incyte Genomics, Cambridge, U.K

6. Departments of Clinical Biochemistry and Medicine, Addenbrooke’s Hospital, Cambridge, U.K

Abstract

Endothelium-derived nitric oxide (NO) facilitates skeletal muscle glucose uptake. Energy expenditure induces the endothelial NO synthase (eNOS) gene, providing a mechanism for insulin-independent glucose disposal. The object was to test 1) the association of genetic variation in eNOS, as assessed by haplotype-tagging single nucleotide polymorphisms (htSNPs) with type 2 diabetes, and 2) the interaction between eNOS haplotypes and total energy expenditure on glucose intolerance. Using multivariate models, we tested associations between eNOS htSNPs and diabetes (n = 461 and 474 case and control subjects, respectively) and glucose intolerance (two cohorts of n = 706 and 738 U.K. and Spanish Caucasians, respectively), and we tested eNOS × total energy expenditure interactions on glucose intolerance. An overall association between eNOS haplotype and diabetes was observed (P = 0.004). Relative to the most common haplotype (111), two haplotypes (121 and 212) tended to increase diabetes risk (OR 1.22, 95% CI 0.96–1.55), and one (122) was associated with decreased risk (0.58, 0.39–0.86). In the cohort studies, no association was observed between haplotypes and 2-h glucose (P > 0.10). However, we observed a significant total energy expenditure–haplotype interaction (P = 0.007). Genetic variation at the eNOS locus is associated with diabetes, which may be attributable to an enhanced effect of total energy expenditure on glucose disposal in individuals with specific eNOS haplotypes. Gene-environment interactions such as this may help explain why replication of genetic association frequently fails.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3