Early development of beta-cells is impaired in the GK rat model of type 2 diabetes.

Author:

Miralles F1,Portha B1

Affiliation:

1. Laboratoire de Physiopathologie de la Nutrition, CNRS-ESA7059, Université Paris, France. miralles@infobiogen.fr

Abstract

The Goto-Kakisaki (GK) rat is a genetic model of type 2 diabetes obtained by selective inbreeding of mildly glucose-intolerant Wistar rats. Previous studies have shown that at birth, the beta-cell mass of the GK rat is severely reduced compared with that of the Wistar rat. Therefore, beta-cell deficit could be the primary defect leading to type 2 diabetes in this model. To identify the abnormality at the origin of the beta-cell mass deficit, we compared the fetal development of GK and Wistar rats. Our study reveals that during early development (embryonic day 12-14 [E12-14]), GK fetuses present a delayed global growth that progressively recovers: at birth, no size or weight difference persists. However, from E18 onward, the weight and DNA content of the pancreas and liver are reduced by 30% in the GK fetuses. Cell proliferation is reduced in the GK pancreas from E16 to E20. Whereas apoptotic cells are scarce in the Wistar fetal pancreas, a wave of apoptosis from E16 to E18 was detected in the GK pancreas. Analysis of pancreas differentiation revealed that from E12 to E14, there are no significant differences in the number of alpha- and beta-cells between the GK and Wistar pancreas. However, by E16, the average number of beta-cells in the GK pancreas represents only 50% that of the Wistar pancreas, and this difference persists until birth. The number of alpha-cells was reduced by 25% from E18 to E21. To determine whether the defect in GK pancreas development depends on intrinsic pancreatic factors or on endocrine extrapancreatic factors, we performed in vitro cultures of E12 pancreatic rudiments. The cultures show that in vitro, the growth and endocrine differentiation of the GK and Wistar pancreatic rudiments are identical. Thus, impaired development of the GK pancreas probably results from insufficiency of extrapancreatic factor(s) necessary for the growth and survival of fetal pancreatic cells.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3