Production of Nε-(Carboxymethyl)Lysine Is Impaired in Mice Deficient in NADPH Oxidase

Author:

Anderson Melissa M.1,Heinecke Jay W.2

Affiliation:

1. Pharmacia Corporation, St. Louis, Missouri

2. Department of Medicine, University of Washington, Seattle, Washington

Abstract

Advanced glycation end products (AGEs) derived from glucose are implicated in the pathogenesis of diabetic vascular disease. However, many lines of evidence suggest that other pathways also promote AGE formation. One potential mechanism involves oxidants produced by the NADPH oxidase of neutrophils, monocytes, and macrophages. In vitro studies have demonstrated that glycolaldehyde, a product of serine oxidation, reacts with proteins to form Nε-(carboxymethyl)lysine (CML), a chemically well-characterized AGE. We used mice deficient in phagocyte NADPH oxidase (gp91-phox−/−) to explore the role of oxidants in AGE production in isolated neutrophils and intact animals. Activated neutrophils harvested from wild-type mice generated CML on ribonuclease A (RNase A), a model protein, by a pathway that required l-serine. CML formation by gp91-phox−/− neutrophils was impaired, suggesting that oxidants produced by phagocyte NADPH oxidase contribute to the cellular formation of AGEs. To determine whether these observations are physiologically relevant, we used isotope-dilution gas chromatography/mass spectrometry to quantify levels of protein-bound CML in mice suffering from acute peritoneal inflammation. Phagocytes from the gp91-phox−/− mice contained much lower levels of CML than those from the wild-type mice. Therefore, oxidants generated by phagocyte NADPH oxidase may play a role in AGE formation in vivo by a glucose-independent pathway.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3