Glucose- and Interleukin-1β-Induced β-Cell Apoptosis Requires Ca2+ Influx and Extracellular Signal-Regulated Kinase (ERK) 1/2 Activation and Is Prevented by a Sulfonylurea Receptor 1/Inwardly Rectifying K+ Channel 6.2 (SUR/Kir6.2) Selective Potassium Channel Opener in Human Islets

Author:

Maedler Kathrin1,Størling Joachim2,Sturis Jeppe3,Zuellig Richard A.1,Spinas Giatgen A.1,Arkhammar Per O.G.3,Mandrup-Poulsen Thomas24,Donath Marc Y.1

Affiliation:

1. Division of Endocrinology and Diabetes, University Hospital, Zurich, Switzerland

2. Steno Diabetes Center, Gentofte, Denmark

3. Novo Nordisk, Måløv, Denmark

4. Department of Molecular Medicine, Rolf Luft Center for Diabetes Research, Karolinska Institute, Stockholm, Sweden

Abstract

Increasing evidence indicates that a progressive decrease in the functional β-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, β-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1β and/or high-glucose-induced β-cell production of IL-1β. Treatment of type 1 and type 2 diabetic patients with the potassium channel opener diazoxide partially restores insulin secretion. Therefore, we studied the effect of diazoxide and of the novel potassium channel opener NN414, selective for the β-cell potassium channel SUR1/Kir6.2, on glucose- and IL-1β-induced apoptosis and impaired function in human β-cells. Exposure of human islets for 4 days to 11.1 and 33.3 mmol/l glucose, 2 ng/ml IL-1β, or 10 and 100 μmol/l of the sulfonylurea tolbutamide induced β-cell apoptosis and impaired glucose-stimulated insulin secretion. The deleterious effects of glucose and IL-1β were blocked by 200 μmol/l diazoxide as well as by 3 and 30 μmol/l NN414. By Western blotting with phosphospecific antibodies, glucose and IL-1β were shown to activate the extracellular signal-regulated kinase (ERK) 1/2, an effect that was abrogated by 3 μmol/l NN414. Similarly, 1 μmol/l of the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor PD098059 or 1 μmol/l of the l-type Ca2+ channel blocker nimodipine prevented glucose- and IL-1β-induced ERK activation, β-cell apoptosis, and impaired function. Finally, islet release of IL-1β in response to high glucose could be abrogated by nimodipine, NN414, or PD098059. Thus, in human islets, glucose- and IL-1β-induced β-cell secretory dysfunction and apoptosis are Ca2+ influx and ERK dependent and can be prevented by the β-cell selective potassium channel opener NN414.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3