A Novel Variant of Ionotropic Glutamate Receptor Regulates Somatostatin Secretion From δ-Cells of Islets of Langerhans

Author:

Muroyama Akiko1,Uehara Shunsuke1,Yatsushiro Shouki1,Echigo Noriko1,Morimoto Riyo1,Morita Mitsuhiro2,Hayashi Mitsuko1,Yamamoto Akitsugu3,Koh Duk-Su4,Moriyama Yoshinori1

Affiliation:

1. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan

2. Tokyo College of Pharmacy, Tokyo, Japan

3. Nagahama Institute of Bioscience and Technology, Shiga, Japan

4. Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea

Abstract

Many metabolic factors affect the secretion of insulin from β-cells and glucagon from α-cells of the islets of Langerhans to regulate blood glucose. Somatostatin from δ-cells, considered a local inhibitor of islet function, reduces insulin and glucagon secretion by activating somatostatin receptors in islet cells. Somatostatin secretion from δ-cells is increased by high glucose via glucose metabolism in a similar way to insulin secretion from β-cells. However, it is unknown how low glucose triggers somatostatin secretion. Because l-glutamate is cosecreted with glucagon from α-cells under low-glucose conditions and acts as a primary intercellular messenger, we hypothesized that glutamate signaling triggers the secretion of somatostatin. In this study, we showed that δ-cells express GluR4c-flip, a newly identified splicing variant of GluR4, an (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptor of rat. After treatment with l-glutamate, AMPA, or kainate, secretion of somatostatin from isolated islets was significantly stimulated under low-glucose conditions. The glutamate-dependent somatostatin secretion was Ca2+ dependent and blocked by 6-cyano-7-nitroquinoxaline-2,3-dione. Somatostatin in turn inhibited the secretion of l-glutamate and glucagon from α-cells. These results indicate that l-glutamate triggers somatostatin secretion from δ-cells by way of the GluR4c-flip receptor under low-glucose conditions. The released somatostatin may complete the feedback inhibition of α-cells. Thus, α- and δ-cells may communicate with each other through l-glutamate and somatostatin signaling.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3