Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins.

Author:

Cusin I1,Zakrzewska K E1,Boss O1,Muzzin P1,Giacobino J P1,Ricquier D1,Jeanrenaud B1,Rohner-Jeanrenaud F1

Affiliation:

1. Laboratoires de Recherches Métaboliques, Geneva University, Switzerland.

Abstract

Continuous (4 days) intracerebroventricular leptin infusion (12 microg/day) was performed in lean rats, and its hormonometabolic effects were determined. Intracerebroventricular leptin administration did not result in leakage of the hormone into the peripheral circulation. Thus, its effects were elicited by its presence within the central nervous system. Intracerebroventricular leptin infusion produced marked decreases in food intake and body weight gain relative to vehicle-infused fed ad libitum rats. Because decreases in food intake alter hormonometabolic homeostasis, additional control rats pair-fed to the amount of food consumed by leptin-infused ones were included in the study. Intracerebroventricular leptin-infused and vehicle-infused pair-fed rats were characterized, relative to vehicle-infused ad libitum-fed animals, by decreases in body weight and insulinemia and by increases in insulin-stimulated overall glucose utilization and muscle and brown adipose tissue glucose utilization index. Brown adipose tissue uncoupling protein (UCP)1, UCP2, and UCP3 mRNA levels were markedly decreased in pair-fed animals relative to those of fed ad libitum control animals, as were liver and white adipose tissue UCP2 and muscle UCP3 mRNA levels. In marked contrast, intracerebroventricular leptin administration was accompanied by the maintenance of high UCP1, UCP2, and UCP3 expression in all these tissues. Thus, despite analogies between leptin's effects and those of pair-feeding with regard to glucose handling, their respective underlying mechanisms differ. While leptin maintains or favors energy-dissipating mechanisms (UCP1, UCP2, and UCP3), the latter are markedly depressed in pair-fed rats. This effect of leptin may prevent subsequent excessive storage processes, thereby maintaining normal body homeostasis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3