Pulsatile Insulin Secretion Dictates Systemic Insulin Delivery by Regulating Hepatic Insulin Extraction In Humans

Author:

Meier Juris J.1,Veldhuis Johannes D.2,Butler Peter C.1

Affiliation:

1. Larry Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California

2. Endocrine Division, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, Rochester, Minnesota

Abstract

In health, insulin is secreted in discrete pulses into the portal vein, and the regulation of the rate of insulin secretion is accomplished by modulation of insulin pulse mass. Several lines of evidence suggest that the pattern of insulin delivery by the pancreas determines hepatic insulin clearance. In previous large animal studies, the amplitude of insulin pulses was related to the extent of insulin clearance. In humans (and in large animals), the amplitude of insulin oscillations is ∼100-fold higher in the portal vein than in the systemic circulation, despite only a fivefold dilution, implying preferential hepatic extraction of insulin pulses. In the present study, by direct hepatic vein sampling in healthy humans, we sought to establish the extent of first-pass hepatic insulin extraction and to determine whether the pattern of insulin secretion (insulin pulse mass and amplitude) dictates the hepatic insulin clearance and thereby delivery of insulin to extrahepatic insulin-responsive tissues. Five nondiabetic subjects (two men and three women, mean age 32 years [range 25–39], BMI 24.9 kg/m2 [21.2–27.1]) participated. Insulin and C-peptide delivery from the splanchnic bed was measured in basal overnight-fasted state and during a glucose infusion of 2 mg · kg−1 · min−1 by simultaneous sampling from the hepatic vein and an arterialized vein along with direct estimation of splanchnic blood flow. Fractional insulin extraction was calculated from the difference between the C-peptide and insulin delivery rates from the liver. The time patterns of insulin concentrations and hepatic insulin clearance were analyzed by deconvolution and Cluster analysis, respectively. Cross-correlation analysis was used to relate C-peptide secretion and insulin clearance. Glucose infusion increased peripheral glucose concentrations from 5.4 ± 0.1 to 6.4 ± 0.4 mmol/l (P < 0.05). Likewise, insulin and C-peptide concentrations increased during glucose infusion (P < 0.05). Hepatic insulin clearance increased with glucose infusion (1.06 ± 0.18 vs. 2.55 ± 0.38 pmol · kg−1 · min−1; P < 0.01), but fractional hepatic insulin clearance was stable (78.2 ± 4.4 vs. 84 0. ± 3.9%, respectively; P = 0.18). Insulin secretory–burst mass rose during glucose infusion (P < 0.05), whereas the interburst interval remained unchanged (4.4 ± 0.2 vs. 4.5 ± 0.3 min; P = 0.36). Cluster analysis identified an oscillatory pattern in insulin clearance, with peaks occurring approximately every 5 min. Cross-correlation analysis between prehepatic C-peptide secretion and hepatic insulin clearance demonstrated a significant positive association without detectable (<1 min) time lag. Insulin secretory–burst mass strongly predicted insulin clearance (r = 0.81, P = 0.0043). In conclusion, in humans, ∼80% of insulin is extracted during the first liver passage. The liver rapidly responds to fluctuations in insulin secretion, preferentially extracting insulin delivered in pulses. The mass (and therefore amplitude) of insulin pulses traversing the liver is the predominant determinant of hepatic insulin clearance. Therefore, through this means, the pulse mass of insulin release dictates both hepatic (directly) as well as extra-hepatic (indirectly) insulin delivery. These findings emphasize the dual role of the liver and pancreas and their relationship mediated through magnitude of insulin pulse mass in regulating the quantity and pattern of systemic insulin delivery.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3