From the Periphery of the Glomerular Capillary Wall Toward the Center of Disease

Author:

Wolf Gunter1,Chen Sheldon2,Ziyadeh Fuad N.2

Affiliation:

1. Department of Internal Medicine (Klinik für Innere Medizin III), University Hospital, Jena, Germany

2. Department of Medicine, Renal-Electrolyte and Hypertension Division, Penn Center for the Molecular Studies of Kidney Diseases, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Nephropathy is a major complication of diabetes. Alterations of mesangial cells have traditionally been the focus of research in deciphering molecular mechanisms of diabetic nephropathy. Injury of podocytes, if recognized at all, has been considered a late consequence caused by increasing proteinuria rather than an event inciting diabetic nephropathy. However, recent biopsy studies in humans have provided evidence that podocytes are functionally and structurally injured very early in the natural history of diabetic nephropathy. The diabetic milieu, represented by hyperglycemia, nonenzymatically glycated proteins, and mechanical stress associated with hypertension, causes downregulation of nephrin, an important protein of the slit diaphragm with antiapoptotic signaling properties. The loss of nephrin leads to foot process effacement of podocytes and increased proteinuria. A key mediator of nephrin suppression is angiotensin II (ANG II), which can activate other cytokine pathways such as transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) systems. TGF-β1 causes an increase in mesangial matrix deposition and glomerular basement membrane (GBM) thickening and may promote podocyte apoptosis or detachment. As a result, the denuded GBM adheres to Bowman’s capsule, initiating the development of glomerulosclerosis. VEGF is both produced by and acts upon the podocyte in an autocrine manner to modulate podocyte function, including the synthesis of GBM components. Through its effects on podocyte biology, glomerular hemodynamics, and capillary endothelial permeability, VEGF likely plays an important role in diabetic albuminuria. The mainstays of therapy, glycemic control and inhibition of ANG II, are key measures to prevent early podocyte injury and the subsequent development of diabetic nephropathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3