Calorie restriction increases insulin-stimulated glucose transport in skeletal muscle from IRS-1 knockout mice.

Author:

Gazdag A C1,Dumke C L1,Kahn C R1,Cartee G D1

Affiliation:

1. Department of Nutritional Sciences, University of Wisconsin, Madison 53706, USA.

Abstract

Calorie restriction (CR), even for brief periods (4-20 days), results in increased whole-body insulin sensitivity, in large part due to enhanced insulin-stimulated glucose transport by skeletal muscle. Evidence suggests that the cellular alterations leading to this effect are postreceptor steps in insulin signaling. To determine whether insulin receptor substrate (IRS)-1 is essential for the insulin-sensitizing effect of CR, we measured in vitro 2-deoxyglucose (2DG) uptake in the presence and absence of insulin by skeletal muscle isolated from wild-type (WT) mice and transgenic mice lacking IRS-1 (knockout [KO]) after either ad libitum (AL) feeding or 20 days of CR (60% of ad libitum intake). Three muscles (soleus, extensor digitorum longus [EDL], and epitrochlearis) from male and female mice (4.5-6 months old) were studied. In each muscle, insulin-stimulated 2DG uptake was not different between genotypes. For EDL and epitrochlearis, insulin-stimulated 2DG uptake was greater in CR compared to AL groups, regardless of sex. Soleus insulin-stimulated 2DG uptake was greater in CR compared with AL in males but not females. The diet effect on 2DG uptake was not different for WT and KO animals. Genotype also did not alter the CR-induced decrease in plasma constituents (glucose, insulin, and leptin) or body composition (body weight, fat pad/body weight ratio). Consistent with previous studies in rats, IRS-1 protein expression in muscle was reduced in WT-CR compared with WT-AL mice, and muscle IRS-2 abundance was unchanged by diet. Skeletal muscle IRS-2 protein expression was significantly lower in WT compared with KO mice. These data demonstrate that IRS-1 is not essential for the CR-induced increase in insulin-stimulated glucose transport in skeletal muscle, and the absence of IRS-1 does not modify any of the characteristic adaptations of CR that were evaluated.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3