Activation of the sphingomyelinase/ceramide signal transduction pathway in insulin-secreting beta-cells: role in cytokine-induced beta-cell death.

Author:

Major C D1,Gao Z Y1,Wolf B A1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6082, USA.

Abstract

Activation of the sphingomyelin/ceramide pathway may mediate interleukin-1-induced beta-cell death (Welsh, N: Interleuken-1beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF-2 in the insulin-producing cell line RINm5F. J Biol Chem 271: 8307-8312, 1996). In this report, we have examined this pathway in more detail. Culture of beta-TC3 cells with 25 micromol/l ceramide analogs (N-acetyl- and N-hexanoylsphingosine) for 72 h did not significantly affect glucose- and carbachol-induced insulin secretion. Dihydroceramide (N-acetyl- or N-hexanoylsphinganine), a structurally similar analog, had no effect on agonist-induced secretion. However, ceramide analogs both time- and dose-dependently decreased cell viability, while the dihydroceramide analog had no effect. The ceramide effect on cell viability mimicked the effect of the cytokines TNF-alpha, IL-1beta, and IFN-gamma, reported stimulators of sphingomyelin hydrolysis. Cytokines, however, failed to stimulate sphingomyelin metabolism. Furthermore, using two different methods to quantitate ceramide, cytokines failed to cause an increase in beta-cell ceramide content versus unstimulated or time-matched vehicle controls. Taken together, these data suggest that although ceramide analogs mimic the cytotoxic effect of cytokines, activation of the sphingomyelin/ceramide signaling pathway is not involved in cytokine-induced beta-cell death.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3