Affiliation:
1. Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
Abstract
Postprandial hyperglycemia is an early indicator of abnormality in glucose metabolism leading to type 2 diabetes. However, mechanisms that contribute to postprandial hyperglycemia have not been identified. This study showed that mice with targeted inactivation of the group 1B phospholipase A2 (Pla2g1b) gene displayed lower postprandial glycemia than that observed in wild-type mice after being fed a glucose-rich meal. The difference was caused by enhanced postprandial glucose uptake by the liver, heart, and muscle tissues as well as altered postprandial hepatic glucose metabolism in the Pla2g1b−/− mice. These differences were attributed to a fivefold decrease in the amount of dietary phospholipids absorbed as lysophospholipids in Pla2g1b−/− mice compared with that observed in Pla2g1b+/+ mice. Elevating plasma lysophospholipid levels in Pla2g1b−/− mice via intraperitoneal injection resulted in glucose intolerance similar to that exhibited by Pla2g1b+/+ mice. Studies with cultured hepatoma cells revealed that lysophospholipids dose-dependently suppressed insulin-stimulated glycogen synthesis. These results demonstrated that reduction of lysophospholipid absorption enhances insulin-mediated glucose metabolism and is protective against postprandial hyperglycemia.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献