Mechanisms of Glucose-Induced Secretion of Pancreatic-Derived Factor (PANDER or FAM3B) in Pancreatic β-Cells

Author:

Yang Jichun1,Robert Claudia E.1,Burkhardt Brant R.1,Young Robert A.1,Wu Jianmei1,Gao Zhiyong1,Wolf Bryan A.1

Affiliation:

1. From the Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

Abstract

Pancreatic-derived factor (PANDER) is an islet-specific cytokine present in both pancreatic α- and β-cells, which, in vitro, induces β-cell apoptosis of primary islet and cell lines. In this study, we investigated whether PANDER is secreted by pancreatic α- and β-cells and whether PANDER secretion is regulated by glucose and other insulin secretagogues. In mouse-derived insulin-secreting β-TC3 cells, PANDER secretion in the presence of stimulatory concentrations of glucose was 2.8 ± 0.4-fold higher (P < 0.05) than without glucose. Insulin secretion was similarly increased by glucose in the same cells. The total concentration of secreted PANDER in the medium was ∼6–10 ng/ml (0.3–0.5 nmol/l) after a 24-h culture with glucose. l-Glucose failed to stimulate PANDER secretion in β-TC3 cells. KCl stimulated PANDER secretion 2.1 ± 0.1-fold compared with control without glucose. An l-type Ca2+ channel inhibitor, nifedipine, completely blocked both glucose- or KCl-induced insulin and PANDER secretion. In rat-derived INS-1 cells, glucose (20 mmol/l) stimulated PANDER secretion 4.4 ± 0.9-fold, while leucine plus glutamine stimulated 4.4 ± 0.7-fold compared with control without glucose. In mouse islets overexpressing PANDER, glucose (20 mmol/l) stimulated PANDER secretion 3.2 ± 0.5-fold (P < 0.05) compared with basal (3 mmol/l glucose). PANDER was also secreted by α-TC3 cells but was not stimulated by glucose. Mutations of cysteine 229 or of cysteines 91 and 229 to serine, which may form one disulfide bond, and truncation of the COOH-terminus or NH2-terminus of PANDER all resulted in failure of PANDER secretion, even though these mutant or truncated PANDERs were highly expressed within the cells. In conclusion, we found that 1) PANDER is secreted from both pancreatic α- and β-cells, 2) glucose stimulates PANDER secretion dose dependently in β-cell lines and primary islets but not in α-cells, 3) PANDER is likely cosecreted with insulin via the same regulatory mechanisms, and 4) structure and conformation is vital for PANDER secretion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3