Affiliation:
1. Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
Abstract
Obesity, insulin resistance, and type 2 diabetes are leading causes of heart failure, and defective cellular Ca2+ handling seems to be a fundamental problem in diabetes. Therefore, we studied the effect of insulin on Ca2+ homeostasis in normal, freshly isolated mouse ventricular cardiomyocytes and whether Ca2+ handling was changed in an animal model of obesity and type 2 diabetes, ob/ob mice. Electrically evoked Ca2+ transients were smaller and slower in ob/ob compared with wild-type cardiomyocytes. Application of insulin (6 or 60 nmol/l) increased the amplitude of Ca2+ transients in wild-type cells by ∼30%, whereas it broadened the transients and triggered extra Ca2+ transients in ob/ob cells. The effects of insulin in ob/ob cells could be reproduced by application of a membrane-permeant inositol trisphosphate (IP3) analog and blocked by a frequently used IP3 receptor inhibitor, 2-aminoethoxydiphenyl borate. In ob/ob cardiomyocytes, insulin increased the IP3 concentration and mitochondrial Ca2+ handling was impaired. In conclusion, we propose a model where insulin increases IP3 in ob/ob cardiomyocytes, which prolongs the electrically evoked Ca2+ release. This, together with an impaired mitochondrial Ca2+ handling, results in insulin-mediated extra Ca2+ transients in ob/ob cardiomyocytes that may predispose for arrhythmias in vivo.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献