Cellular Mechanism of Nutritionally Induced Insulin Resistance in Psammomys Obesus

Author:

Ikeda Yukio1,Olsen Grith S.1,Ziv Ehud2,Hansen Lone L.1,Busch Anna K.1,Hansen Bo F.3,Shafrir Eleazar2,Mosthaf-Seedorf Luitgard1

Affiliation:

1. Department of Molecular Signaling, Hagedorn Research Institute, Gentofte, Denmark

2. Diabetes Research Unit, Hadassah University Hospital, Jerusalem, Israel

3. Novo Nordisk A/S, Bagsværd, Denmark

Abstract

The sand rat (Psammomys obesus) is an animal model of nutritionally induced diabetes. We report here that several protein kinase C (PKC) isoforms (α, ε, and ζ, representing all three subclasses of PKC) are overexpressed in the skeletal muscle of diabetic animals of this species. This is most prominent for the ε isotype of PKC. Interestingly, increased expression of PKCε could already be detected in normoinsulinemic, normoglycemic (prediabetic) animals of the diabetes-prone (DP) line when compared with a diabetes-resistant (DR) line. In addition, plasma membrane (PM)–associated fractions of PKCα and PKCε were significantly increased in skeletal muscle of diabetic animals, suggesting chronic activation of these PKC isotypes in the diabetic state. The increased PM association of these PKC isotypes revealed a significant correlation with the diacylglycerol content in the muscle samples. Altered expression/activity of PKCε, in particular, may thus contribute to the development of diabetes in these animals; along with other PKC isotypes, it may be involved in the progression of the disease. This may possibly occur through inhibition of insulin receptor (IR) tyrosine kinase activity mediated by serine/threonine phosphorylation of the IR or insulin receptor substrate 1 (IRS-1). However, overexpression of PKCε also mediated downregulation of IR numbers in a cell culture model (HEK293), resulting in attenuation of insulin downstream signaling (reduced protein kinase B [PKB]/Akt activity). In accordance with this, we detected decreased 125I-labeled insulin binding, probably reflecting a downregulation of IR numbers, in skeletal muscle of Psammomys animals from the DP line. The number of IRs was inversely correlated to both the expression and PM-associated levels of PKCε. These data suggest that overexpression of PKCε may be causally related to the development of insulin resistance in these animals, possibly by increasing the degradation of IRs.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3