Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle.

Author:

Derave W1,Ai H1,Ihlemann J1,Witters L A1,Kristiansen S1,Richter E A1,Ploug T1

Affiliation:

1. Copenhagen Muscle Research Centre, Department of Human Physiology, University of Copenhagen, Denmark.

Abstract

5'AMP-activated protein kinase (AMPK) has been suggested to be a key regulatory protein in exercise signaling of muscle glucose transport. To test this hypothesis, we investigated whether muscle glycogen levels affect AMPK activation and glucose transport stimulation similarly during contractions. Rats were preconditioned by a combination of swimming exercise and diet to obtain a glycogen-supercompensated group (high muscle glycogen content [HG]) with approximately 3-fold higher muscle glycogen levels than a glycogen-depleted group (low muscle glycogen content [LG]). In perfused fast-twitch muscles, contractions induced significant increases in AMPK activity and glucose transport and decreases in acetyl-CoA carboxylase (ACC) activity in both HG and LG groups. Contraction-induced glucose transport was nearly 2-fold (P < 0.05) and AMPK activation was 3-fold (P < 0.05) higher in the LG group compared with the HG group, whereas ACC deactivation was not different between groups. Thus, there was a significant positive correlation between AMPK activity and glucose transport in contracting fast-twitch muscles (r = 0.80, P < 0.01). However, in slow-twitch muscles with HG, glucose transport was increased 6-fold (P < 0.05) during contractions, whereas AMPK activity did not increase. In contracting slow-twitch muscles with LG, the increase in AMPK activity (315%) and the decrease in ACC activity (54 vs. 34% at 0.2 mmol/l citrate, LG vs. HG) was higher (P < 0.05) compared with HG muscles, whereas the increase in glucose transport was identical in HG and LG. In conclusion, in slow-twitch muscles, high glycogen levels inhibit contraction-induced AMPK activation without affecting glucose transport. This observation suggests that AMPK activation is not an essential signaling step in glucose transport stimulation in skeletal muscle.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3